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FREE VIBRATIONS OF THE PRESTRESSED TOROIDAL MEMBRANE

By Atis A. Liepins

SUMMARY

A numerical analysis of the free vibrations of the prestressed circular
toroidal membrane is presented. Frequency curves and mode shapes are displayed
and compared with those of the prestressed circular string and those obtained from
classical ring theory. The effect of prestress on frequencies is shown.

INTRODUCTION

We are concerned with the natural frequencies and modes of vibrationofaprestressed
toroidal membrane. Prestress caused by internal pressure and centrifugal forces
is considered. The torus is supported in a free - free manner.

The purpose of this investigation is to demonstrate a numerical procedure
and to show the nature of the natural frequencies and modes of vibration by numerical
results. '

SYMBOLS
an’ bn Fourier coefficients of string modes
g acceleration of gravity
h thickness of membrane and string
k (1 - v2)i<
k* (1+v2)k
p pressure
r (1 -ecosa)/e
u Fourier coefficient of meridional displacement
u meridional displacement (Figure 1)
v Fourier coefficient of circumferential displacement

circumferential displacement (Figure 1)

<
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g1

m

Fourier coefficient of normal displacement

normal displacement (Figure 1)

coefficients defined in Appendix A

functions defined in Appendix A

Young's modulus

membrane strains

junctions of distortions
membrane forces per unit length
String force

radius of generating circle of the torus (Figure 1);
radius of string

membrane prestress forces
string prestress force

circumferential displacement of string

normal displacement of string

position angle (Figure 1)

raﬁo of the two radii of the torus (Figure 1)
circumferential angle (Figure 1‘)

p R/Eh, prestress parameter

2
(pRz/ Ee } wz , frequency parameter
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v Poisson's ratio

p material density

¢ Fourier coefficient of ¢ o
¢a’ 0] 0’ ¢oz P membrane rotations

qi)s string rotation

w circular frequency

T ph(sz:R)2 /pR 2

A spacing between stations

speed of rotation of membrane

Matrices
A,B,C,D,E,F,G 3 X 3 matrices
A, B, C 2 X 2 matrices
Z 1 x 3 column matrix
zZ 1 x 2 column matrix
Indices
i station
I last station
. m Fourier index of string vibrations
n - Fourier index of membrane vibrations

3 Progress through Research.
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FUNDAMENTAL EQUATIONS

Equations suitable for the analysis of vibrations of prestressed mem-
branes have been recently derived by Budiansky (Ref. 1). For the circular torus
these are (refer to Figure 1):

Equilibrium
5 aNae aEa
W(rNa) + 50 —Nesma + rSa o o
+ S iE - ¢ + |E_ - E,| sin |t pRr¢ +thw2rﬁ=0
6 |0 af af o 6 o
«f
()
ON

: 6 9 . X
| o0 i o767 (rNaG) +Noze sin @+ rSa teTat (Ea0+ ¢a0)

oE

6 . 2 -
+Se 59 + ZEaG sina + ¢9 cos a¢| + pRr¢6+ phRw” rv =10 )
8¢>a
rN - N, cosa + rS - E
o 6 o da o
. 8¢’9 N . + + h 2 -
S6 80 ¢, Sina - Ejcosa pRr (Ea E9>- phRw™ rw =0

(3)

Strain Displacement

du —
= —= +
RE, o w (4)
RE, = 2 + §si - w 5
rRE, = 5 u sin o W COS & (3)
9rRE .= r ¥ 420 _ o g (6)
of tela" 0

4 Progress through Research




DYNATECH

_ 8w - |
R, = o U (7
ow . —
-qube Y + v cos o (8)
_ %u 8 <
2rR¢,0= B3 " Ba FV) (9)
Constitutive Relations
EhE, = N, - VN, (10)
Eh EG = NG—VNa (11
EhE o = (1+¥) Ny (12)

The above constltute 12 equations for the 12 unknowns N, N Nyeo»
Ew, Eg, Egg, ¢ @ , U, v, and w. Sa and S, describe the state of prestress.
They are determined (%rom a separate analysis of the torus subjected to static internal
pressure and centrifugal loads. An analysis based on the linear membrane theory

(Ref. 2) gives

1——1—€cosa

_ 2
S, = PR l-€cos & 13)

S

il

Z PR + oh (2 Rr)?

Analyses of the torus under internal pressure based upon nonlinear
theories (Ref. 3 and 4) show that the linear meridional stress, Sy, can be in error
by 18% . The significant difference, however, between the linear and nonlinear
stress distributions is confined to a small area of the torus. The error in the
circumferential stress is negligible. Furthermore, the stresses according to
the nonlinear theory depend on deformations. Such deformations are assumed to
be negligible in the derivation of the fundamental equations (1 - 12). Hence, it is
assumed thatthe state of prestress determined according to the linear membrane
theory is adequately accurate for the analysis of the free vibrations.

S Progress through Research
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When the prestress is given by Equation 13, the solutions of the funda-
mental equations (1 - 12) are such that either w and v are even, u is odd or w and v
are odd, and u is an even function of o with respect to & = 0 and @ = 7. These two
groups of solutions will be called symmetric and antisymmetric modes, respectively.

REDUCTION TO ORDINARY SECOND ORDER
DIFFERENTIAL EQUATIONS

The fundamental equations (1 - 12) can be reduced in the usual manner
to three differential equations in U, v, and w. However, to obtain a rapid conver-
gence of the finite difference scheme, described in the following section, we obtain
three equations in u, v, and ¢ as follows. First, expand u, v, w, and ¢a inFourier

series
[~ o}

u = R Z un(oz)cosne

n=0
o0

= RZ vn(a)sinne

n=0

<

o0

= Rz w_(a) cosnf
n

n=0

=\

qsa = Z qbn (o) cosné (14)

n=0

Next, substitute Equations (4 - 6) and (8 - 14) into Equations (1 - 3). The resultant
equations together with Equation (7) constitute four ordinary differential equations
inu , Vn’ Wn’ and cpn. They are of the form

n
Fl @', u,u, viv,ww, ¢ =0 (15)

Fz ', u, v', v, v, w) = 0 (16)

F3 (', u, v, w, ¢", ¢) =0 (17

¢tw' -u=0 (18)

In the above and all subsequent equations, the subscript n on the Fourier coefficients
has been dropped. Primes indicate differentiation with respect to «.

6 Progress through Research.
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Equation (17) can be solved for w in terms of u, v, and ¢:

1. 1
Qw =T1u'+T2u+T3V+K(1+—2—'-C)¢'+—2"K MS¢ (19)
and the first derivative of w can be expressed as
Qw'’ = -Q'WHF, (u', u',u, v, v, ¢" ¢', ¢) (20)

All coefficients in Equations (19 and 20) are defined in Appendix A.

Now, multiply Equation (15) by Q and eliminate Qw' using Equation (20).
Then multiply the resultant equation by Q and eliminate Qw using Equation (19). In
the same way eliminate w' from Equation (18). Finally, multiply Equation (16) by
Q and eliminate Qw. The resultantthree differential equations for u, v, and ¢ are
each of the second order. They can be written in matrix form

AZ" + BZ' + CZ =0 (21)
where ul
Z =\v
o

The elements of A,B,and C are defined in Appendix A.

The basic Equations(21) simplify for several special classes of vibrations.
In the case of axisymmetric vibrations, n =0, v = 0, and the second equation of
Equations(21) (equilibrium in 6 direction) is satisfied identically. Then, Equations
(21) becomes

AZ" + BZ' + CZ = 0 ' (22)
where - [
7 =
4

The elements of A, B, and C are the remaining elements of A, B, and C if the second
row and column are deleted.

Furthermore, if the torus is not prestressed («x = 0), ¢ can be eliminated
from Equations(22). The resultant differential equation for u is:

_ _Ccosa 1" ' =
[7\ (l—ecoso)z AI u'"' + Azu + A3u 0 (23)
where A, A,, and Ag are given in Appendix A.

7 Progress through Research.
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In the case of circumferential vibrations, u=w=¢ =0, n=0, v=v (a),
and thefirst and third equations of Equation (21) are satisfied identically. The
governing differential equation for v is

Blv" + B1V' + B3V =0 (24)

The coefficients are given in Appendix A.

NUMERICAL ANALYSIS

The geometry and prestress are symmetrical about @ = 0 and a = 7.
Hence, we need to consider only one-half of the torus corresponding to the range

0= a=7. Letthis range be subdivided by I + 1 equally spaced stations. Then the
spacing between stations is
A = 7/I

and the position angle for the ith station is

ozi=iA i=20,1,2,....1

The differential Equations(21) at the ith station can then be written
1" 1 = T
Aizi + BiZi + Cizi 0 i 0,1,2,....1 (25)

The elements of Ai’ Bi’ and Ci are those of A, B, and C with a replaced by iA.

The derivatives of z at the ith station are approximated by the central
difference formulas

1
S _.
Zi = za Ge17% -0
1
2= ~F (B+17254% ) (26)

With these formulas we obtain from Equation (25) the set of finite difference equations

D.z + E.Z. +F.Z. =0 i=20,1,2,....1

ii+1 ii i“i-1 (27)

where

8 Progress through Research.
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A, + 2AC,
i i

DI

2
i T AMNTE (28)

The difference Equations (27) are augmented by conditions at i = 0 and
i =1. These end conditions are obtained from considerations of continuity of the.
displacement functions u, v, and w. They are

fpe1 = 2GZp
where -1
G =| 1
-1 (29)

Plus and minus signs refer to symmetric and antisymmetric modes respectively.
The eigenvalues of the set of difference Equations (27) are obtained
by trial and error. Inthis procedure a Gaussian elimination technique is employed,
applicable to equations with a tridiagonal matrix (Ref. 5). The equations for this
procedure are obtained as follows. Let
Z, = -P.Z +1 (30)
i i

Substitution of the above expression into Equations (27) gives the recurrence relation

Now, write the difference Equations (27) at i = 0 and eliminate Z_1 using Equations (29).
The result is

EyZ, *+ [DO + FO(}] z, =0

which provides the expression
_ -1 [ .
PO = EO [UO + FOG] (32)

Equation (32) together with the recurrence relation Equation (31) provides all the
P's upto P Finally, write the difference Equations (27) at i = 1. Eliminate
I+1 usmgIEquatlons (29), and Zj_ i using Equation (30). The result is

[EI— [FI + DIG] PIV_1 zI]= 0 (33)

9 Progress through Research.
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Since ZI # 0, we must require that the determinant
= - +
v ‘EI [FI + DIG] P _ 1‘ (54

vanish. Equation (34) is effectively a frequency equation. A value of A which gives
V = 0 is a natural frequency of vibration.

The mode shape corresponding to a natural frequency can be calculated,
once a A for which V = 0 and the corresponding P matrices are obtained. We set
the amplitude of one of the displacementsat i = I equal to unity and calculate the re-
maining displacementsat i = I from two of the Equations (33). Thus, for the symmetric

modes

0
Z; = 1
0 (35)
For antisymmetric modes 1
Z; = {0
1 (36)

where
+(D32(I)' Faam ) Pora-1 " (Pss* Fssm)Baiaon
+ (D -F ) P - (D +F

E31(1) _(D?;I(I) 31(1)) Pll(I 1)
32(I) ~ 32(I) 23(I-1) 33(I) 33(1)71)331—1)

E33(1)‘(D31(1) s1m) ) Piaa-

(37)
The remaining Z's can then be calculated from Equations (30).

The w displacement is obtained from Equation (19). In finite difference
form the equation reads

-1 11 - K 1 _ K
Vi T [2A Tl(i)<ui+1 ui—1)+T2(i)ui+T3(i)vi+2A 1+2Ci><¢i+l ¢i—1)+ 2Misi¢i]

_ 1 [ 1 3 1
YoT Q| & Ty " Ta0) Yo © A(l " zcc) ¢1]

0]
I S B _ K 1
17 07q : A Ty M-17% Ta't A<1 Ty 01 ¢1—1J (38)
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The computation procedure is summarized as follows:
1. Assume a value of \;

2. With the assumed A, calculate the elements of the A, B,
and C matrices at all stations from equations given in
Appendix A;

3. Calculate the matrices D,, Ei’ Fi’ and Pi from Equations
(28), (31), and (32);

4. Evaluate the determinant V, Equation (34);

5. Repeat steps 1 ~ 4 to obtain a plot of V versus A. A
typical plot is shown in Figure 2.

6. Calculate the mode shape corresponding to a natural
frequency from Equations (30)and (35 - 38).

The equations in this procedure were programmed for the digital computer.

The numerical analysis of Equations (22 - 24) is similar to that de-
scribed above for Equation (21). The equations of these analysis were also pro-
grammed for the digital computer.

RESULTS AND DISCUSSION

Natural frequencies and mode shapes forn =0, 1, 2, 3 and circum-
ferential vibrations are computed. Prestress due to internal pressure with intensities
corresponding to k = 0.002, 0.0001, and 0 is considered. The effect of centrifugal
forces is determined for two specific geometries.

The frequencies and mode shapes of two limiting cases are of interest
in the interpretation of the results:

1. The hollow ring (classical thin ring theory, Reference 6).

2. The prestressed circular string.
The "ring" frequencies and mode shapes are approximations to the overall deformation
of the torus when € is small. They are shown in Figure 3. The "string" frequencies

and mode shapes are associated with distortions of the cross section. There are two
families of "string' modes with the following frequencies:

2im2 _
Lower family: A= iz ﬁ—(gl—l-)—
m +1 (39)

11 Progress through Research.
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2

Upper family: A — 5 (40)

These are derived in Appendix B.

Accordingly, the frequencies of the toroidal membrane are divided
with a lower family and an upper family of frequencies.

Lower Family

The frequencies and eleastic mode shapes for n =0, 1, 2, and 3 when
K = 0.002 are displayed in Figures 4 - 9. The set of three dashed curves on the
frequency plots represent ''string'" frequencies. The mode shapes are shown as
distortions of the cross section due to u and w displacement. The v displacement
is shown in a separate plot. The complete mode shape is obtained by multiplying
the u and w displacements by cos né and the v displacement by sin n#@.

For € small, the lowest mode for each type of vibration, exceptn =1,
symmetric, is approximated by a ring mode. In the case of the exception, the
frequency approaches infinity instead of the '"ring'" value A = 2. The same is true
for the second mode of the n = 2 symmetric vibration. Here the frequency would
be expected to approach A = 5. In both instances the corresponding 'ring' modes
are of the extensional type. An explanation of these exceptions has not been found.

For € small, frequencies of the higher modes approach the string
frequencies.

The most striking feature of the frequency curves is the interaction
of the 'ring" and "string'' modes at approximately the frequencies of the "ring"
modes. The result of the interaction is a drastic decrease in frequency of the
lowest mode. The decrease in frequency is accompanied by a transition from the
overall "ring' to a "string'" mode shape associated with deformation of the cross
section. The effect of the interaction on the higher modes is to increase the com-
plexity of their mode shapes.

The significant feature of the mode shapes is that they increase in
complexity with increasing e: first, through interactions with the '"ring' modes
and, finally, through local deformations of the cross section. Some interaction
areas are exceptions where the mode shapes resemble those of the '"ring' modes.

The frequency curves for n = 0, 2 when « = 0.000] are displayed in
Figures 20 - 23. These figures show that the interactions between "ring'" and
"string' modes occur at lower values of € than in the « = 0.002 case. The mode
shapes for « = 0.000]1 are similar in nature to those for x = 0.002. For thisreason
they are not displayed.

When the membrane is not prestressed (k = 0) it has a continuous
frequency spectrum. The range of the spectrum is

0=A = (1- e)'z (41)

12
Progress through Research.




DYNATECH

That is, every frequency in this range is a natural frequency of vibration. The mode
shapes are discontinuous. As examples, two mode shapes are shown in Figure 24.

The character of these vibrations is due to the singular nature of the
governing differential Equation (23). The frequency range Equation (4l) is obtained
from the governing Equation (23) by equating to zero that part of the coefficient of
u'' which is inside the brackets.

Discontinuous mode shapes are not realistic results. There is evidence
that an analysis of the vibrations based upon a nonlinear membrane theory would yield
continuous mode shapes. Consider the case A = 0. It corresponds to the static de-
formation of the torus subjected to internal pressure which approaches zero. In this
case there are no solutions of the linear membrane equations for which the displace-
ments are continuous (Ref. 5). Studies based upon nonlinear membrane theor1es
(Ref. 4 and 5) show that continuous displacements are possible.

The dependence on prestress (k = 0 excluded) of the frequency of the
lowest n = 0, symmetric mode is shown in Figure 25. It shows the nonlinear relation
between frequency and prestress. The dependence on prestress of all frequencies
is such that as the prestress is increased without limit, all frequencies approach
infinity.

The modes considered in this section have frequencies of the order of
magnitude indicated by Equation (39). Hence, they are considered as constituents
of the lower family of frequencies.

Upper Family

The upper family frequencies and mode shapes for k = 0 are displayed
in Figures 26 - 28. These modes are associated with cross sectional distortions.
The frequencies are reasonably well approximated by the string frequencies, except
for the second symmetric mode. Thisfrequency curve can be obtained by setting
A, (a = 7) =0, see Equation (23). Thus, it is a result of the singular nature of

E%luation (23).

Circumferential Vibrations

The circumferential vibration frequency curves are displayed in
Figures 29 and 30, and the mode shapes in Figures 31 and 32. The antisymmetric
modes are torsional vibrations about the axis of rotation. The symmetric modes
are nontorsional.

For € small, the frequencies of the first symmetric and antisymmetric
modes are approximated by

20 +v)A =1 + O(x)

Thus, the circumferential modes are weakly dependent on prestress .

13 Progress through Research.
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Rigid Body Modes

The rigid body modes (A = 0) of the torus are:

1. Displacement parallel to the axis of rotation

=
Il

Cos «
v = 0
w = sin o

2. Displacement normal to the axisof rotation

u = sinacosé
v = sin 6
W = coS o cosf

3. Rotation about the axis of rotation

u = w =0
vV = r

4. Rotation about an axis normal to the axis of rotation

u

= (e€- cos @) cos f
v = -€sin o sin 6§
w = -sinao cos @

Examples

The ten lowest modes of vibration of two specific structures are
computed as examples. Case I is the toroidal membrane idealization of a 150’
diameter space station (Ref. 7) (¢ = 1/15, k = 0.001875). Case II is a 24' model
torus (Ref.8) (e =1/3, k = 0.00476). The pertinent parameters of both cases
are given in Appendix C.

The frequencies are given in Tables I and II. They are compared
with classical ring frequencies (Ref. 6).

The mode shapes of both cases are shown in Figures 33 and 34.

14
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Effect of Centrifugal Forces

Prestress due to centrifugal forces arising from spin about the axis of
rotation was considered for Cases I and II. The speed of the spin was such as to cause
a lg acceleration at the outer rim of the torus. Such spinning changes the frequencies
of vibration given in Tables I and II by less than one percent.

CONCLUDING REMARKS

The results of the numerical analysis show that there are three groups
of modes of vibration:

1. Lower family, for which the modes of classical ring theory,
and those of the prestressed circular string are limiting
cases;

2. Upperfamily, whose frequencies are reasonably well ap-

proximated by the upper family of frequencies of the pre-
stressed circular string;

3. Circumferential modes.

The frequencies of the lower family modes depend strongly on the
intensity of prestress. The circumferential modes are practically independent of
prestress.

The 'ring' and "string'" modes interact causing a decrease in frequency
that is associated with cross sectional distortion.

The study of the upper family modes should be extended to include non-
axisymmetrical modes of vibration and the effect of prestress.
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Appendix A

COEFFICIENTS OF DIFFERENTIAL EQUATIONS

Define the following quantities:

k = (l-V%K ]
S _ € sin ¢
1-¢ccosa
c = £cosa
1 -ecosa
- . €n
N 1-¢cosao
M = 1+21‘(1—ecosoz)2
Q = 62(1-u2)x-1+(2u—§§1‘—> c-<1+ —12{—M>C2'— %MN2
_ 5)
T1 = 1—(V— 2 C
T, = s |v-k-{1+ £ M|cC
2 2
T, = N Lu—k- (1+ kM)c]
_ X
T4— 1+k—<v— 2)0
T, = N k—v+(1+k)C]
T, = QS (1+ 5M)(1+C)-T Q'
6 2 4
The derivatives of M, Q, Tl’ T2 and T3 are: ‘
M' = 4¢T (1-€cos ) sina .
r
Q = L2(1+ %M)C—(%}— %‘—‘—ﬂ S(L +C) + KMN2S - %M (N2 +c?)
k
T, = s(v- E) (1+C)
T.'= |vk-l1+8M]c c-s%+s | s{1+ kmla+o)-Emc
2 2 2 2
Ty = NS {(1—v)+k(1+M)+2(1+kM)C}—kM’NC
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The elements of the A, B and C matrices are:

Qla-v? (ezk—Cz)—k[(l—V)C-<1+—% c) EZa-vHn +

App T
+—;M(N2+Cz)(1+k+§c>+C(1+%C>(k+c>]
Ay = kQT4(1+%C>
Ay, = Q[%(l-y)+_k<1+% c)]
Agp = QT
Ay = KQ (1 vz c)
Alg T Agy T Ay T Ag =0
B, - Q[Qs(1+12—‘M>+ T, (T1'+T2)]+T1T6
B, = Q|:l(1+v)NQ + T, T } ‘
12 2 3 14
B, = k[T6<1+lzc>-—%QT4s (1—M+C)}
Byp = T1115'".%(1”)@1\]
By, = 3 @S (1-»+kM)
By, - kT5<1+—;~C>
By, = Q(T,'+T,)-QT,
Bgp = QT
By, = —k‘:Q'(l+%~C)+—;—QS(1—M+C)]
Cpy - Qz[vC—S‘Z— %(I—V)Nz— gM(N2+Sz)+ez(1—v2)7\1+ QT, T, +T,T,
Ci, = - ONS [% (3—v)+kM}+QT;1T3'+T3 T,

17 Progress through Research
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13

21

CZZ

CZ3

C33

£ (qr, [M ©-s%) + m's } Q%C + T, MS

T, T \:%(3—V)+kM]QNS .

2 75
Q l:ez (1-v2)A- N% - % (1-1) (C+8%) - g— M(N2+82+CZ)—kC]+ T3T;
£ 1 Ms
% Q[M(C—Sz)+M'S]—%Q'MS+Q2

The coefficients of the differential Equation (23) are:

<-4 q
-2 -
Q%s.+ 0S8 (1-vC) [(V—C)+v(1+0)] +

S(1-vC) (1+C)[ Q +2(1-vC) (v-C) }
G 2 [uc 2+ 2 7\} Q(1-v C) \:(V—C) c-8?) +s2 @+c) }

+5%(w-0) 1+C) [§+2(1-VC) (V—C)j\

where @ = e2(1-v2)A- 1+2vC~C2

The coefficients of the differential Equation (24) are:

1+ k*¥(2+C)
S(1 +k*M) ' -

2(1 +v) €24 - (C + S?) - k* (MSZ + MC? + 2C)

k* = (L+1)K
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Appendix B

VIBRATION OF THE PRESTRESSED CIRCULAR STRING

The analysis is based upon the membrane equationsof Ref. (2). For

the prestressed circular string they are:

Equilibrium
2
' 4+ | - =
N SS (ES -9 + pR¢s+thw U=0 ®B1)
2
1 —_ - =
Ns +Ss (ES+¢S) pREs pPhRw™ W=0
Strain - Displacement
E - b W
. (B2)
- = _\xt
¢, = § (W' + )
Constitutive Relation
N = EhE (B3)
s s
The prestress is
Sg = PR (B4)
Substitution of Equations (B2-B4) into (Bl) yields
2
(A+)U" + € Au+t (1+)W'=0
(BS)

Q+)U - kW' + (1—€2>\)W=0

19 Progress through Research.
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The solutions of Equations (B5) are:

[+

U=Z a sinma
n
n=0
[~}
W=Z b cos mo
n
n=0

With this solution, the frequency equation can be obtained from Equations

(B5) in the usual manner
E20) 2. (1+mZ+24m?) (eN) + k(L +9 m2(m>-1) = 0

The roots of the frequency equation are approximately

2 2
K m (m -~1)
AR 2
€ m +1
A m2+1
~ 2

where k has been neglected in presence of unity.

20
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Appendix C

STRUCTURAL PARAMETERS

The structural parameters of Case I (Ref. 7) and Case II (Ref. 8, 9) are

given below:

Case 1 Case 11
R = 5 8!
i 751 24!
€
h = 0.032" 0.080"
p = 10 psi 7 psi
E = 107 psi 1.763 x 10° psi
v = 0.3 0
.3 .3
pg = 0.1 #/in 0.0217 #/in
= LR =

K o 0.001875 0.00476
€ = 1/15 1/3

hR%g>
r = -LB2E _ 4 00450 0.000558

PR €

Wall thickness of Case I is based on a yield stress of 65,000 psi and a design
pressure of 30 psi. Young's Modulus of Case II is for individual chords of the

filament cage. Q produces a lg acceleration at the outer rim.

2l Progress through Research.
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Table I Frequencies of Case I

Mode Fourier Frequency Ring Frequency
Number Index Type ] Cps . _Cps

1 2 Antisymmetric 3.67 4.27
2 2 Symmetric 3.77 4.39
3 3 Antisymmetric 10.07 12.2
4 3 Symmetric 10.13 12.4
5 4 Antisymmetric 18.4 23.6
6 4 i Symmetric 18.5 23.8
7 0 ' Antisymmetric 19.5 24.6
8 5 | Antisymmetric 27.5 38.3
9 5 Symmetric 27.6 38.5

10 1 Antisymmetric 27.7 32.7

Table II Frequencies of Case II
Mode Fourier | .. | Frequency | Ring Frequency |
Number Index Tyng _ Cps Cps

1 0 Antisymmetric 2.63 6.92
2 2 Antisymmetric 2.70 6.01
3 2 Symmetric 2.97 6.19
4 3 Antisymmetric 5.03 17.2
5 3 Symmetric 5.11 17.5
6 4 Symmetric 6.720 33.3
7 4 Antisymmetric 6.722 33.6
8 3 Antisymmetric 7.85 -—
9 2 Antisymmetric 7.86 —

10 2 Symmetric 7.87 —

23
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